Abstract

Direct revegetation is an important measure to immobilize heavy metals and improve the microecological properties of metal smelting slag sites. However, the vertical distribution of nutrients, microecological properties, and heavy metals at a directly revegetated metal smelting slag site remains unclear. Here, the distribution characteristics of nutrients, enzyme activities, microbial properties, and heavy metals in the vertical profile at a zinc smelting slag site directly revegetated with two herb species (Lolium perenne and Trifolium repens) for 5 years were investigated. The results showed that the nutrient contents, enzyme activities, and microbial properties decreased with increasing slag depth after revegetation with the two herb species. The nutrient contents, enzyme activities, and microbial properties of the surface slag revegetated with Trifolium repens were better than those in the surface slag revegetated with Lolium perenne. The higher root activity in the surface slag (0–30 cm) resulted in relatively higher contents of pseudo-total and available heavy metals in the surface slag. Moreover, the contents of pseudo-total heavy metals (except for Zn) and available heavy metals in the slag revegetated with Trifolium repens were lower than those in the slag revegetated with Lolium perenne at most slag depths. Overall, the greater phytoremediation efficiency of the two herb species occurred mainly in the surface slag (0–30 cm), and the phytoremediation efficiency of Trifolium repens was higher than that of Lolium perenne. The findings are beneficial for understanding the phytoremediation efficiency of direct revegetation strategies for metal smelting slag sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call