Abstract

Knowledge of soil carbon (C) distribution and its relationship with the environment can improve our understanding of its biogeochemical cycling and help to establish sound regional models of C cycling. However, such knowledge is limited in environments with complex landscape configurations. In this study, we investigated the vertical distribution and storage of soil organic carbon (SOC) and soil inorganic carbon (SIC) in the 10 representative landscapes (alpine meadow, subalpine shrub and meadow, mountain grassland, mountain forest, typical steppe, desert steppe, Hexi Corridor oases cropland, Ruoshui River delta desert, Alxa Gobi desert, and sandy desert) with contrasting bioclimatic regimes in the Heihe River Basin, Northwest China. We also measured the 87Sr/86Sr ratio in soil carbonate to understand the sources of SIC because the ratio can be used as a proxy in calculating the contribution of pedogenic inorganic carbon (PIC) to total SIC. Our results showed that SOC contents generally decreased with increasing soil depth in all landscapes, while SIC contents exhibited more complicated variations along soil profiles in relation to pedogenic processes and parent materials at the various landscapes. There were significant differences of C stocks in the top meter among different landscapes, with SOC storage ranging from 0.82 kg C/m2 in sandy desert to 50.48 kg C/m2 in mountain forest and SIC storage ranging from 0.19 kg C/m2 in alpine meadow to 21.91 kg C/m2 in desert steppe. SIC contributed more than 75% of total C pool when SOC storage was lower than 10 kg C/m2, and the proportion of PIC to SIC was greater than 70% as calculated from Sr isotopic ratio, suggesting the critical role of PIC in the C budget of this region. The considerable variations of SOC and SIC in different landscapes were attributed to different pedogenic environments resulted from contrasting climatic regimes, parent materials and vegetation types. This study provides an evidence for a general trade-off pattern between SOC and SIC, showing the compensatory effects of environmental conditions (especially climate) on SOC and SIC formation in these landscapes. This is largely attributed to the fact that the overall decrease in temperature and increase in precipitation from arid deserts to alpine mountains simultaneously facilitate the accumulation of SOC and depletion of SIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.