Abstract

Soil microplastic pollution is ubiquitous, but the vertical distribution characteristics of microplastics in different land use types are unclear. In this study, the microplastic abundance, particle size, shape, color, and polymer type in 0–20 cm, 20–40 cm, and 40–60 cm soil layers of seven land use types (woodland, grassland, maize, wheat, cotton, polytunnel, and greenhouse) were systematically investigated in Shouguang City, a typical agricultural city in China. The results showed that the average microplastic abundance from top to deep for the three soil layers of Shouguang City were 1948.1 ± 992.5, 1349.4 ± 654, and 670.1 ± 341.6 items kg−1. In the top soil layer (0–20 cm), the abundance of microplastics in facility soils was significantly higher than in other land use types. In agricultural soils, microplastics were predominantly small size (<0.5 mm), films and fragments, PE and PP. The average microplastic abundance in deep soils (40–60 cm) of the seven land use types was 349.1 ± 62.8 (woodland), 284.9 ± 113.9 (grassland), 657.1 ± 127.1 (maize), 537.8 ± 137.4 (wheat), 851.4 ± 204.2 (cotton), 878.5 ± 295.7 (polytunnel), 1132.2 ± 304.5 (greenhouse) items kg−1, respectively, accounting for 11 % to 19 % in all three soil layers. The percentage of small size and pellet microplastics increased in deep soils (40–60 cm). Correlation analysis showed that soil environmental factors (pH, EC, total phosphorus, total nitrogen, and organic carbon) influenced to different extents the distribution, fragmentation, and transport of microplastics. The results of this study contribute to a better understanding of contamination and vertical distribution of soil microplastics in agricultural and non-agricultural soils, as well as provide important data for the development of preventive and management policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.