Abstract

Vertically extended, high velocity dispersion stellar distributions appear to be a ubiquitous feature of disc galaxies, and both internal and external mechanisms have been proposed to be the major driver of their formation. However, it is unclear to what extent each mechanism can generate such a distribution, which is likely to depend on the assembly history of the galaxy. To this end, we perform 16 high resolution cosmological-zoom simulations of Milky Way-sized galaxies using the state-of-the-art cosmological magneto-hydrodynamical code \textlcsc{AREPO}, and analyse the evolution of the vertical kinematics of the stellar disc in connection with various heating mechanisms. We find that the bar is the dominant heating mechanism in most cases, whereas spiral arms, radial migration, and adiabatic heating from mid-plane density growth are all sub-dominant. The strongest source, though less prevalent than bars, originates from external perturbations from satellites/sub-halos of masses log$_{10} (M/\rm M_{\odot}) \gtrsim 10$. However, in many simulations the orbits of newborn star particles become cooler with time, such that they dominate the shape of the age-velocity dispersion relation and overall vertical disc structure unless a strong external perturbation takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.