Abstract
AbstractClose to its southern end where it connects to the Red Sea rift, the Dead Sea strike‐slip fault (DSF) becomes trans‐tensional in the Gulf of Aqaba. Details of this transition, however, remain difficult to unravel as most of the active tectonic structures are located off‐shore. This study focuses on uplifted marine terraces located in the Gulf of Aqaba and on Tiran Island. Using high‐resolution tri‐stereo Pleiades satellite imagery, we build a Digital Surface Model (DSM) at a 0.5‐m resolution of the eastern coast of the gulf and Tiran Island to map 19 levels of marine terraces. The terraces are preserved at elevations from 1 m to almost 500 m above the current sea level. Correlating laterally U‐Th ages obtained along the gulf with the lower levels found on Tiran Island, we build an age model to estimate the ages of the upper terraces on the island. Combining this with the terrace heights from our DSM, we derive the uplift rate affecting the terraces. The geographic extent of the terraces along the gulf suggests that the DSF is responsible for uplift along the entire eastern coastline of the gulf at a rate of about 0.14 ± 0.03 mm/year at least over the Quaternary. The uplift rate of Tiran Island, located closer to the Red Sea rift, is faster at 0.21 ± 0.02 mm/year over the past 2.4 Myr. This faster uplift rate suggests a combined tectonic uplift related to both the Dead Sea strike‐slip fault system and the Red Sea rift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.