Abstract

A light emitting structure consisting of two coupled microcavities has been realized and studied. One of the two cavities contains a luminescent organic thin film of tetrakis(4-methoxyphenyl)porphyrin, whereas the other microcavity is a dielectric structure coupled to the organic one by means of a LiF/ZnS Bragg mirror. Reflectivity spectra show the presence of two well defined cavity dips. We observe an energy splitting of the two cavity modes. Despite the fact that only one cavity contains the active layer, the photoluminescence spectra display two peaks with comparable intensities at the same energy of the reflectivity dips. These observations indicate the strong coupling of the two cavities. The comparison of the diagonalized effective Hamiltonian with the observed resonances further confirms the strong coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.