Abstract

AbstractHydrogen evolution reaction (HER) is a key reaction in water splitting, and developing efficient and robust non‐noble electrocatalysts for HER is still a great challenge for large‐scale hydrogen production. Herein, a vertically aligned core–shell structure grown on Ti foil with CoP nanoarray as a core and N,P‐doped carbon (NPC) as a shell (CoP/NPC/TF) is first reported as an efficient electrocatalyst for HER. Results indicate that CoP/NPC/TF only demands the overpotentials of 91 and 80 mV to drive the current density of 10 mA cm−2 in acidic and alkaline solutions. The electrochemical measurements and theoretical calculations show that the synergy of CoP nanorod core and porous NPC shell enhances HER performance significantly, because the introduction of porous NPC shell not only offers more active sites but also improves the electrical conductivity and durability of the sample in acidic and alkaline solutions. Density functional theory calculation further reveals that all the C atoms between N and P atoms in CoP/NPC are the most efficient active sites, which greatly improve the HER performance. The identification of active species in this work provides an effective strategy to design and synthesize the low‐cost, high‐efficient, and robust CoP‐based electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.