Abstract

The dorsal cochlear nucleus receives input from the auditory nerve and relays acoustic information to the inferior colliculus. Its principal cells receive two systems of inputs. One system through the molecular layer carries multimodal information that is processed through a neuronal circuit that resembles the cerebellum. A second system through the deep layer carries primary auditory nerve input, some of which is relayed through interneurons. The present study reveals the morphology of individual interneurons and their local axonal arbors and how these inhibitory interneurons respond to sound. Vertical cells lie beneath the fusiform cell layer. Their dendritic and axonal arbors are limited to an isofrequency lamina. They give rise to pericellular nests around the base of fusiform cells and their proximal basal dendrites. These cells exhibit an onset-graded response to short tones and have response features defined as type II. They have tuning curves that are closed contours (0 shaped), thresholds approximately 27 dB SPL, spontaneous firing rates of approximately 0 spikes/s, and they respond weakly or not at all to broadband noise, as described for type II units. Their responses are nonmonotonic functions of intensity with peak responses between 30 and 60 dB SPL. They also show a preference for the high-to-low direction of a frequency sweep. It has been suggested that these circuits may be involved in the processing of spectral cues for the localization of sound sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.