Abstract
For the treatment of bacteremia, early diagnosis and rapid antibiotic susceptibility tests (ASTs) are necessary because survival chances decrease significantly if the proper antibiotic administration is delayed. However, conventional methods require several days from blood collection to AST as it requires three overnight cultures, including blood culture, subculture, and AST culture. Herein, we report a more rapid method of sensing bacterial growth and AST in blood based on a vertical capacitance sensor functionalized with aptamers. Owing to their vertical structure, the influence of blood cells sunk by gravity on capacitance measurements were minimized. Thus, bacterial growth in blood at 100–103 CFU/mL was monitored in real-time by measuring changes in capacitance at f = 10 kHz. Moreover, real-time capacitance measurements at f = 0.5 kHz provided information on biofilm formation induced during blood cultures. Bacterial growth and biofilm formation are inhibited above the minimal inhibitory concentration of antibiotics; therefore, we also demonstrated that vertical capacitance aptasensors could be applied to rapid AST from positive blood cultures without a need for the subculture process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.