Abstract

BackgroundSufficient vertical and lateral bone supply and a competent osteogenic healing process are prerequisities for the successful osseointegration of dental implants in the alveolar bone. Several techniques including autologous bone grafts and guided bone regeneration are applied to improve quality and quantity of bone at the implantation site. Depending on the amount of lacking bone one- or two-stage procedures are required. Vertical bone augmentation has proven to be a challenge particularly in terms of bone volume stability. This study focuses on the three dimensional vertical bone generation in a one stage procedure in vivo. Therefore, a collagenous disc-shaped scaffold (ICBM = Insoluble Collagenous Bone Matrix) containing rhBMP-2 (Bone Morphogenetic Protein-2) and/or VEGF (Vascular Endothelial Growth Factor) was applied around the coronal part of a dental implant during insertion. RhBMP-2 and VEGF released directly at the implantation site were assumed to induce the generation of new vertical bone around the implant.MethodsOne hundred eight titanium implants were inserted into the mandible and the tibia of 12 mini pigs. Four experimental groups were formed: Control group, ICBM, ICBM + BMP-2, and ICBM + BMP-2 + VEGF.After 1, 4 and 12 weeks the animals were sacrificed and bone generation was investigated histologically and histomorphometrically.ResultsAfter 12 weeks the combination of ICBM + rhBMP2 + VEGF showed significantly more bone volume density (BVD%), a higher vertical bone gain (VBG) and more vertical bone gain around the implant (PVBG) in comparison to the control group.ConclusionBy using collagenous disc-shaped matrices in combination with rhBMP-2 and VEGF vertical bone can be generated in a one stage procedure without donor site morbidity. The results of the presenting study suggest that the combination of rhBMP-2 and VEGF applied locally by using a collagenous carrier improves vertical bone generation in vivo. Further research is needed to establish whether this technique is applicable in clinical routines.

Highlights

  • Sufficient vertical and lateral bone supply and a competent osteogenic healing process are prerequisities for the successful osseointegration of dental implants in the alveolar bone

  • Around implants covered by Insoluble collagenous bone matrix (ICBM) + BMP-2 and ICBM + BMP-2 + Vascular endothelial growth factor (VEGF) islands of osteoid could be found within the area of the ICBMscaffold

  • Results of this study suggest that the combination of Recombinant human bone morphogenetic protein-2 (rhBMP-2) and VEGF applied locally by using a collagenous carrier enhances vertical bone generation around the implant in vivo

Read more

Summary

Introduction

Sufficient vertical and lateral bone supply and a competent osteogenic healing process are prerequisities for the successful osseointegration of dental implants in the alveolar bone. Several techniques including autologous bone grafts and guided bone regeneration are applied to improve quality and quantity of bone at the implantation site. The main disadvantages of bone grafts are donor site morbidity, limited supply, and possible postoperative complications [18]. When it comes to quality of life after surgery, patients’ discomfort appears to be significantly higher when autogenous bone grafts (especially iliac crest grafts) are used in comparison to other augmentative techniques or materials [6, 17, 19,20,21,22,23]. When used without a membrane technique, there might be fibrous encapsulation of the graft and as a consequence no sufficient bone-to-implant contact [8, 24]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call