Abstract

We report highly collimated radiation from incoherent quantum emitters coupled to photonic dispersion-engineered structures. Two-dimensional free-standing photonic crystal slabs sustained an extremely high density of states for vertically leaky light at discrete frequencies, which results from the constructive interference between directly reflected light and quasi-bound guided modes, referred to as Fano resonance. Electromagnetic simulations showed that an electric dipole that is excited near a photonic crystal slab generates vertically directional radiation at every Fano resonance frequency. The radiation distribution of an electric dipole is strongly correlated with the angular reflectance of a coupled photonic crystal slab. The strategy developed herein will be useful to achieve a vertical beam from quantum emitters such as transition metal dichalcogenide monolayers, facilitating the delivery of light into other external optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.