Abstract

We used flow cytometry to examine seasonal variations in basin-scale distributions of bacterioplankton in Lake Biwa, Japan, a large mesotrophic freshwater lake with an oxygenated hypolimnion. The bacterial communities were divided into three subgroups: bacteria with very high nucleic acid contents (VHNA bacteria), bacteria with high nucleic acid contents (HNA bacteria), and bacteria with low nucleic acid contents (LNA bacteria). During the thermal stratification period, the relative abundance of VHNA bacteria (%VHNA) increased with depth, while the reverse trend was evident for LNA bacteria. Seasonally, the %VHNA was strongly positively correlated (r = 0.87; P < 0.001) with the concentration of dissolved inorganic phosphorus, but not with the concentration of chlorophyll a. The growth of VHNA bacteria was significantly enhanced by addition of phosphate or phosphate plus glucose but not by addition of glucose alone. Although the growth of VHNA and HNA bacteria generally exceeded that of LNA bacteria, our data also revealed that LNA bacteria grew faster than and were grazed as fast as VHNA bacteria in late August, when nutrient limitation was presumably severe. Based on these results, we hypothesize that in severely P-limited environments such as Lake Biwa, P limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid contents, which allows LNA bacteria to be competitive and become an important component of the microbial loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call