Abstract

A half-space containing horizontally multilayered regions of different transversely isotropic elastic materials as well as a homogeneous half-space as the lowest layer is considered such that the axes of material symmetries of different layers and the lowest half-space to be as depth-wise. A rigid circular disc rested on the free surface of the whole half-space is considered to be under a forced either vertical or horizontal vibration of constant amplitudes. Because of the involved integral transforms, the mixed boundary value problems due to mixed condition at the surface of the half-space are changed to some dual integral equations, which are reduced to Fredholm integral equations of second kind. With the help of contour integration, the governing Fredholm integral equations are numerically solved. Some numerical evaluations are given for different combinations of transversely isotropic layers to show the effect of degree of anisotropy of different layers on the response of the inhomogeneous half-space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call