Abstract
ABSTRACTAs a collaborative effort to characterize a pilot test site for managed aquifer recharge (MAR), vertical and horizontal distributions of microbial communities in the river bank subsurface were investigated to assess the ecological effects after the operation of the MAR using the river water adjacent to the site. Along with a geochemical analysis, barcoded pyrosequencing was performed using the genomic DNAs extracted from the subsurface groundwater/sediment samples retrieved from three multilevel wells among the installed cluster of 14 boreholes. A total of 9 samples from 3 depths (10, 15–25, and 33 m below the ground surface) of each borehole showed higher bacterial abundance and diversity in the shallow (10 m) depths than in the deep (33 m) groundwater. In addition, there was a slight separation of the microbial communities between the depths based on the nonmetric multidimensional scaling analysis of the Yue and Clayton distance and the distance-weighted UniFrac analysis. The phylum Proteobacteria was dominant in all the samples at the sequence abundance of 64.0–97.8% with the total operational taxonomic units of 3375 at the species level, while among the total 288 genera, the genus Pseudomonas and an unclassified genus from Betaproteobacteria were the most abundant across the samples. The community separation between the shallow and the deep groundwater seemed to be correlated with depth differences, supported by differences in the dissolved oxygen (DO) concentration and oxidation-reduction potential (ORP). In the study site, unusually high values of electrical conductivity (EC) were found in the deep groundwater, but those values were unlikely to contribute to the community separation between the shallow and deep groundwater, unlike the DO and ORP values, which were found to influence the community differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.