Abstract
Every four-dimensional mathcal{N}=2 superconformal field theory comes equipped with an intricate algebraic invariant, the associated vertex operator algebra. The relationships between this invariant and more conventional protected quantities in the same theories have yet to be completely understood. In this work, we aim to characterize the connection between the Higgs branch of the moduli space of vacua (as an algebraic geometric entity) and the associated vertex operator algebra. Ultimately our proposal is simple, but its correctness requires the existence of a number of nontrivial null vectors in the vacuum Verma module of the vertex operator algebra. Of particular interest is one such null vector whose presence suggests that the Schur index of any mathcal{N}=2 SCFT should obey a finite order modular differential equation. By way of the “high temperature” limit of the superconformal index, this allows the Weyl anomaly coefficient a to be reinterpreted in terms of the representation theory of the associated vertex operator algebra. We illustrate these ideas in a number of examples including a series of rank-one theories associated with the “Deligne-Cvitanović exceptional series” of simple Lie algebras, several families of Argyres-Douglas theories, an assortment of class mathcal{S} theories, and mathcal{N}=2 super Yang-Mills with mathfrak{s}mathfrak{u}(n) gauge group for small-to-moderate values of n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.