Abstract

Given a vertex Lie algebra [Formula: see text] equipped with an action by automorphisms of a cyclic group [Formula: see text], we define spaces of cyclotomic coinvariants over the Riemann sphere. These are quotients of tensor products of smooth modules over “local” Lie algebras [Formula: see text] assigned to marked points [Formula: see text], by the action of a “global” Lie algebra [Formula: see text] of [Formula: see text]-equivariant functions. On the other hand, the universal enveloping vertex algebra [Formula: see text] of [Formula: see text] is itself a vertex Lie algebra with an induced action of [Formula: see text]. This gives “big” analogs of the Lie algebras above. From these we construct the space of “big” cyclotomic coinvariants, i.e. coinvariants with respect to [Formula: see text]. We prove that these two definitions of cyclotomic coinvariants in fact coincide, provided the origin is included as a marked point. As a corollary, we prove a result on the functoriality of cyclotomic coinvariants which we require for the solution of cyclotomic Gaudin models in [B. Vicedo and C. Young, Cyclotomic Gaudin models: Construction and Bethe ansatz, preprint (2014); arXiv:1409.6937]. At the origin, which is fixed by [Formula: see text], one must assign a module over the stable subalgebra [Formula: see text] of [Formula: see text]. This module becomes a [Formula: see text]-quasi-module in the sense of Li. As a bi-product we obtain an iterate formula for such quasi-modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call