Abstract
Variety of real-life structures can be simplified by a graph. Such simplification emphasizes the structure represented by vertices connected via edges. A common method for the analysis of the vertices importance in a network is betweenness centrality. The centrality is computed using the information about the shortest paths that exist in a graph. This approach puts the importance on the edges that connect the vertices. However, not all vertices are equal. Some of them might be more important than others or have more significant influence on the behavior of the network. Therefore, we introduce the modification of the betweenness centrality algorithm that takes into account the vertex importance. This approach allows the further refinement of the betweenness centrality score to fulfill the needs of the network better. We show this idea on an example of the real traffic network. We test the performance of the algorithm on the traffic network data from the city of Bratislava, Slovakia to prove that the inclusion of the modification does not hinder the original algorithm much. We also provide a visualization of the traffic network of the city of Ostrava, the Czech Republic to show the effect of the vertex importance adjustment. The algorithm was parallelized by MPI (http://www.mpi-forum.org/) and was tested on the supercomputer Salomon (https://docs.it4i.cz/) at IT4Innovations National Supercomputing Center, the Czech Republic.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.