Abstract

For a simple, undirected graph $G(V,E)$, a function $h : V(G) rightarrow lbrace 0, 1, 2rbrace$ such that each edge $ (u,v)$ of $G$ is either incident with a vertex with weight at least one or there exists a vertex $w$ such that either $(u,w) in E(G)$ or $(v,w) in E(G)$ and $h(w) = 2$, is called a vertex-edge Roman dominating function (ve-RDF) of $G$. For a graph $G$, the smallest possible weight of a ve-RDF of $G$ which is denoted by $gamma_{veR}(G)$, is known as the textit{vertex-edge Roman domination number} of $G$. The problem of determining $gamma_{veR}(G)$ of a graph $G$ is called minimum vertex-edge Roman domination problem (MVERDP). In this article, we show that the problem of deciding if $G$ has a ve-RDF of weight at most $l$ for star convex bipartite graphs, comb convex bipartite graphs, chordal graphs and planar graphs is NP-complete. On the positive side, we show that MVERDP is linear time solvable for threshold graphs, chain graphs and bounded tree-width graphs. On the approximation point of view, a 2-approximation algorithm for MVERDP is presented. It is also shown that vertex cover and vertex-edge Roman domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MVERDP is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call