Abstract
We investigate families of two-dimensional simplicial complexes defined in terms of vertex decompositions. They include nonevasive complexes, strongly collapsible complexes of Barmak and Miniam and analogues of 2-trees of Harary and Palmer. We investigate the complexity of recognition problems for those families and some of their combinatorial properties. Certain results follow from analogous decomposition techniques for graphs. For example, we prove that it is NP-complete to decide if a graph can be reduced to a discrete graph by a sequence of removals of vertices of degree 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.