Abstract

In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.