Abstract

Vertebrae, intervertebral disc (IVD) and spinal canal (SC) displacements are in the root of several spinal cord pathologies. The localization and boundary extraction of these structures, along with the quantification of their displacements, provide valuable clues for assessing each pathological condition. In this work, we propose a computational method for boundary extraction of vertebrae, IVD and SC in magnetic resonance images (MRI). Vertebrae shape priors derived from computed tomography (CT) images are used to guide vertebrae, IVD and SC boundary extraction in MRI. This strategy is dictated by three considerations: (1) CT is the modality of choice for highlighting solid structures such as vertebrae, (2) vertebrae boundaries indirectly impose constraints on the boundaries of neighbouring structures (IVD and SC), and (3) it can be observed that edges are similarly located in CT and MR images; therefore, gradient profiles and shape priors learned by active shape models (ASMs) from CT are also valid in MRI. Experimental comparisons on two MR image datasets demonstrate that the proposed approach obtains segmentation results, which are comparable to the state of the art. Moreover, the adopted bimodal strategy is validated by demonstrating that CT-derived shape priors lead to more accurate boundary extraction than MRI-derived shape priors, even in the case of MR image applications. Unlike existing bimodal methods, the proposed one is not dependent on the availability of CT/MR image pairs, which are not usually acquired from the same patient. In addition, unlike state-of-the-art deep learning-based methods, it is not dependent on large amounts of training data. The proposed method requires a limited amount of user intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.