Abstract

This investigation was designed to characterize the effect of the extracellular matrix molecule versican on chondrocyte morphology, using the well-studied chondrocyte cell culture system. When cultured chondrocytes reverted or “dedifferentiated” to a fibroblast-like morphology, we found that versican expression was significantly enhanced. Transfection of chondrocytes, isolated from embryonic chicken sterna, with a chicken miniversican construct accelerated the reversionprocess, while expression of an antisense construct inhibited it. A mutant miniversican lacking two epidermal growth factor-like motifs (versicanΔEGF) promoted differentiation, as shown by morphological changes and changes in the expression of other extracellular matrix molecules. A truncated versican mutant, the G3ΔEGF, a G3 domain lacking its two epidermal growth factor-like motifs, also enhanced differentiation. This effect is related to G3ΔEGF-induced change in cytoskeleton, since transfected cells exhibited misassembly of actin filaments. This article thus provides the first evidence that versican modulates chondrocyte morphology via changes in cytoskeletal structure, and may imply that extracellular matrix molecules play an important role in cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.