Abstract

Amino acids constitute the key sources of nitrogen for growth of Candida albicans. In order to survive inside the host in different and rapidly changing environments, this fungus must be able to adapt via its expression of genes for amino acid metabolism. We analysed the ARO8, ARO9, YER152C, and BNA3 genes with regards to their role in the nutritional flexibility of C. albicans. CaAro8p is undoubtedly the most versatile enzyme among the aminotransferases investigated. It is involved in the catabolism of histidine, lysine, and aromatic amino acids as well as in l-Lys, Phe and Tyr biosynthesis. CaAro9p participates in the catabolism of aromatic amino acids and lysine at high concentrations of these compounds, with no biosynthetic role. Conversely, the CaYer152Cp catalytic potential for aromatic amino acid catabolism observed in vitro appears to be of little importance in vivo. Neither biosynthetic nor catabolic roles of CaBan3p were observed for any proteinogenic amino acid. Finally, none of the analysed aminotransferases was solely responsible for the catabolism of a single particular amino acid or its biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.