Abstract

Memristive devices have garnered significant attention in the field of electronics over the past few decades. The reason behind this immense interest lies in the ubiquitous nature of memristive dynamics within nanoscale devices, offering the potential for revolutionary applications. These applications span from energy-efficient memories to the development of physical neural networks and neuromorphic computing platforms. In this research article, the angle toppling technique (ATT) was employed to fabricate titanium dioxide (TiO2) nanoparticles with an estimated size of around 10 nm. The nanoparticles were deposited onto a 50 nm SiOx thin film (TF), which was situated on an n-type Si substrate. Subsequently, the samples underwent annealing processes at temperatures of 550 °C and 950 °C. The structural studies of the sample were done by field emission gun-scanning electron microscope (FEG-SEM) (JEOL, JSM-7600F). The as-fabricated sample exhibited noticeable clusters of nanoparticles, which were less prominent in the samples annealed at 550 °C and 950 °C. The element composition revealed the presence of titanium (Ti), oxygen (O2), and silicon (Si) from the substrate within the samples. X-ray diffraction (XRD) analysis revealed that the as-fabricated sample predominantly consisted of the rutile phase. The comparative studies of charge storage and endurance measurements of as-deposited, 550 °C, and 950 °C annealed devices were carried out, where as-grown device showed promising responses towards brain computing applications. Furthermore, the teaching-learning-based optimization (TLBO) technique was used to conduct further comparisons of results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.