Abstract
One-pot facile synthesis and characterization of novel β-substituted meso-tetraphenylporphyrins and/or chlorins were described. The high regioselective reactivity of active methylene compounds in Michael addition reaction was reported to access β-substituted trans-chlorins. Size-dependent approach was applied for the fine-tuning of product formation from porphyrins to chlorins. Notably, we were able to isolate mono/trisubstituted porphyrin and/or di/tetra-substituted chlorin from one-pot synthesis for the first time in porphyrin chemistry. Single-crystal X-ray diffraction analysis revealed the quasiplanar to moderate nonplanar conformation of chlorins due to trans orientation of β-substituents, whereas porphyrins exhibited higher mean plane deviation from 24-atom core (Δ24) as compared to chlorins. β-Functionalized chlorins exhibited lower protonation constants and much higher deprotonation constants as compared to porphyrins revealing the combined effect of the conformation of macrocyclic core and the electronic nature of β-substituents. Facile synthesis of porphyrins and/or chlorins based on the size of Michael donor employed and in turn resulted in tunable photophysical and electrochemical redox properties are the significant features of the present work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.