Abstract

Nanoporous carbons are very attractive for various applications including energy storage. Templating methods with assembled amphiphilic molecules or porous inorganic templates are typically used for the synthesis. Amongst the different members of this family, CMK-5-like structures that are constructed to consist of sub-10nm amorphous carbon nanotubes and ultrahigh specific surface area due to their thin pore walls, have the best properties in various respects. However, the fabrication of such hollow-structured mesoporous carbons entails elaborately tailoring the surface properties of template pore walls and selecting specific carbon precursors. Thus, very limited cases are successful. Herein, wereport a versatile and general silanol-assisted surface-casting method to create hollow-structured mesoporous carbons and heteroatom-doped derivatives with numerous organic molecules (e.g., furfuryl alcohol, resol, 2-thiophene methanol, dopamine, tyrosine) and different structural templates. These carbon materials exhibit ultrahigh surface area (2400 m2 g-1 ), large pore volume (4.0 cm3 g-1 ), as well as satisfactory lithium-storage capacity (1460 mAh g-1 at 0.1 A g-1 ), excellent rate capability (320 mAh g-1 at 5 A g-1 ), and very outstanding cycling performance (2000 cycles at 5 A g-1 ). This article is protected by copyright. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.