Abstract

Conjugated sequence-defined polymers represent a cutting-edge area of polymer science, merging the precision of biological macromolecules with the versatility of synthetic polymers and the unique properties of conjugated systems. While early reports focused on activation/deactivation strategies, this Letter presents the first orthogonal approach to developing sequence-defined conjugated macromolecules (CMs), incorporating a new monomer at each reaction step. In CMs, the primary monomer sequence meticulously determines the optoelectronic properties. Step-by-step, features such as structural defects, chain length, dispersity, functional groups, topology, and monomers used in the backbone are carefully considered and controlled, with optical data provided to support the necessity of sequence-defined approaches in CMs. Additionally, a pioneering and repeatable modular approach is introduced, connecting different orthogonally developed sequences. This method enhances efficiency and accelerates the synthesis process, facilitating comprehensive structure-property analyses and paving the way for tunable materials with record-breaking properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.