Abstract

Quantum dots (QDs) hold immense promise for bioimaging, yet technical challenges in surface engineering limit their wider scientific use. We introduce poly(pentafluorophenyl acrylate) (PPFPA) as a user-friendly prepolymer platform for creating precisely controlled multidentate polymeric ligands for QD surface engineering, accessible to researchers without extensive synthetic expertise. PPFPA combines the benefits of both bottom-up and prepolymer approaches, offering minimal susceptibility to hydrolysis and side reactions for controlled chemical composition, along with simple synthetic procedures using commercially available reagents. Live cell imaging experiments highlighted a significant reduction in nonspecific binding when employing PPFPA, owing to its minimal hydrolysis, in contrast to ligands synthesized by using a conventional prepolymer prone to uncontrolled hydrolysis. This observation underscores the distinct advantage of our prepolymer system. Leveraging PPFPA, we synthesized biomolecule-conjugated QDs and performed QD-based immunofluorescence to detect a cytosolic protein. To effectively label cytosolic targets in such a dense and complex environment, probes must exhibit minimal nonspecific binding and be compact. As a result, QD-immunofluorescence has focused primarily on cell surface targets. By creating compact QD-F(ab')2, we sensitively detected alpha-tubulin with a ∼50-fold higher signal-to-noise ratio compared to organic dye-based labeling. PPFPA represents a versatile and accessible platform for tailoring QD surfaces, offering a pathway to realize the full potential of colloidal QDs in various scientific applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call