Abstract

Herein, a novel multifunctional photoelectrochemical (PEC) biosensor based on AgInS2 (AIS)/ZnS quantum dots (QDs) sensitized-WSe2 nanoflowers and DNA nanostructure signal probe was designed to achieve ultra-sensitive “On−Off” detection of human tumor necrosis factor α (TNF-α) and methylase Dam MTase (MTase). AIS/ZnS QDs as an excellent photosensitive material was found to match WSe2 in energy level for the first time, and the photocurrent signal after sensitization was 65 times that of WSe2 nanoflowers and 17.9 times that of AIS/ZnS QDs. Moreover, abundant AIS/ZnS QDs were loaded on the TiO2 nanoparticles with good conductivity by DNA to fabricate a multifunctional probe, which can not only amplify signal but also specifically recognize target. When target TNF-α was present, the AIS/ZnS QDs signal probe was attached to the WSe2 nanoflowers-modified electrode through binding to aptamer, and the amplified PEC signal was generated for “on” assay of TNF-α. Furthermore, Dam MTase as second target induced methylation of hairpin HDam, so it is cleaved by the endonuclease DpnI, resulting in the shedding of AIS/ZnS QDs signal probe for signal “off” detection of MTase. This work opened a new photosensitized probe and developed a promising PEC biosensor for dual-targets assay. By programming the DNA nanostructure, the biosensor can detect versatile targets in a simple and sensitive method, which has good practical application value in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.