Abstract

Chain-transfer processes represent highly effective chemical means to achieve selective, in situ d- and f-block-metal catalyzed functionalization of polyolefins. A diverse variety of electron-poor and electron-rich chain-transfer agents, including silanes, boranes, alanes, phosphines, and amines, effect efficient chain termination with concomitant carbon-heteroelement bond formation during single-site olefin-polymerization processes. High polymerization activities, control of polyolefin molecular weight and microstructure, and selective chain functionalization are all possible, with distinctly different mechanisms operative for the electron-poor and electron-rich reagents. A variety of metal centers (early transition metals, lanthanides, late transition metals) and single-site ancillary ligand arrays (metallocene, half-metallocene, non-metallocene) are able to mediate these selective chain-termination/functionalization processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.