Abstract

Multimodal optical techniques are useful for the comprehensive characterization of material properties. In this work, we developed a new, to the best of our knowledge, multimodal technology that can simultaneously measure a subset of mechanical, optical, and acoustical properties of the sample and is based on the integration of Brillouin (Br) and photoacoustic (PA) microscopy. The proposed technique can acquire co-registered Br and PA signals from the sample. Importantly, using synergistic measurements of the speed of sound and Brillouin shift, the modality offers a new approach to quantifying the optical refractive index, which is a fundamental property of a material and is not accessible by either technique individually. As a proof of concept, we demonstrated the feasibility of integrating the two modalities and acquired the colocalized Br and time-resolved PA signals in a synthetic phantom made out of kerosene and CuSO4 aqueous solution. In addition, we measured the refractive index values of saline solutions and validated the result. Comparison with previously reported data showed a relative error of 0.3%. This further allowed us to directly quantify the longitudinal modulus of the sample with the colocalized Brillouin shift. While the scope of the current work is limited to introducing the combined Br-PA setup for the first time, we envision that this multimodal modality could open a new path for the multi-parametric analysis of material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.