Abstract

This work describes a versatile microfluidic platform for evaluation of cell-surface glycan expression at the single-cell level using quantum dots (QDs) tagged with phenylboronic acid. The platform was integrated with dual microwell arrays, allowing the introduction of cells in two states using the same cell culture chamber. The simultaneous analysis of cells in the same environment minimized errors resulting from different culture conditions. As proof-of-concept, the expressions of sialic acid (SA) groups on K562 cells, with or without 3'-azido-3'-deoxythymidine (AZT) treatment, were evaluated in the same chamber. 3-Aminophenylboronic acid functionalized CdSeTe@ZnS-SiO2 QDs (APBA-QDs) were prepared as probes to recognize SA groups on K562 cells with only one-step labeling. The results showed that the expression of SA moieties on K562 cells was increased by 18% and 31% after treatment with 20 and 40 μM AZT, respectively. Performing the drug treatment and control experiments simultaneously in the same chamber significantly improved the robustness and effectiveness of the assay. The strategy presented here provides an alternative tool for glycan analysis in a sensitive, high-throughput, and effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.