Abstract
Structural features of the reduced form of the nickel superoxide dismutase (Ni-SOD) active site have been modeled with asymmetric NiN(2)S(2) complexes (Et(4)N)[Ni(nmp)(SR)] (R = C(6)H(4)-p-Cl (2) and (S(t)Bu) (3)) obtained via S,S-bridge splitting of the dimeric metallosynthon, [Ni(2)(nmp)(2)] (1). Complexes 2 and 3 are irreversibly oxidized at potentials within the window needed for SOD activity, 236 and 75 mV versus Ag/AgCl, respectively. The exogenous thiolato-S in 2 and 3 serves as a proton acceptor, suggesting potential involvement of Cys6 in Ni-SOD for H(+) storage between SOD half reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.