Abstract

Poly(silylether)s are interesting materials because of their degradation property under hydrolytic conditions and have been prepared via hydrosilylation polymerization from dicarbonyl and hydrosilanes, and via dehydrogenative cross-coupling of diols and hydrosilanes under catalytic conditions. Here, we present a manganese–salen compound based on an inexpensive and nontoxic metal that could effectively catalyze both polymerization reactions with hydrosilane. A series of poly(silylether)s containing various aliphatic and aromatic backbones have been synthesized from diol and dicarbonyl substrates. Moderate to high yields of polymers with number-average molecular weights up to 15 kg/mol are obtained. Because of the dual activity of the manganese catalyst, unsymmetrical substrates with mixed functional groups, such as p-hydroxybenzaldehyde, p-hydroxy benzylalcohol, and 3-(4-hydroxyphenyl)-1-propanol, have been employed to afford poly(silylether)s with multiple silicon connectivity in the main chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call