Abstract

Methods allowing construction of macroscopic programmed materials in a flexible and efficient fashion are highly desirable. However, the existing approaches are far removed from such materials. A new self-healing-driven assembly (SHDA) strategy to fabricate various programmed materials by using uniform gel beads (microsize of 212 µm or millimeter size of 4 mm) as building blocks is described here. In virtue of hydrogen bonds and host-guest interactions between gel beads, a series of linear, planar, and 3D beaded assemblies are fabricated via SHDA in microfluidic channels in a continuous and controlled manner. From the perspective of practical applications, the use of gel assemblies is exploited for tissue engineering with controlled cells coculture, as well as light conversion materials toward white-light-emitting diodes (WLEDs). The SHDA strategy developed in this study gives a new insight into the facile and rapid fabrication of various programmed materials toward biological tissue and optoelectronic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.