Abstract

We demonstrate a new technique that requires a relatively low temperature of 670–800 °C to synthesize in 10–20 min high crystalline quality MoO3 nano- and microbelts and ribbons. The developed technological process allows rapid synthesis of large amounts of MoO3 nano- and microsheets, belts, and ribbons, and it can be easily scaled up for various applications. Scanning electron microscopy (SEM) studies revealed that the MoO3 nano- and microbelts and ribbons are synthesized uniformly, and the thickness is observed to vary from 20 to 1000 nm. The detailed structural and vibrational studies on grown structures confirmed an excellent agreement with the standard data for orthorhombic α-MoO3. Also, such freestanding nano- and microstructures can be transferred to different substrates and dispersed individually. Using focused ion beam SEM, MoO3-based 2D nano- and microsensors have been integrated on a chip and investigated in detail. The nanosensor structures based on MoO3 nano- and microribbons are quite stable...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.