Abstract

Successful gene vectors should be with high transfection efficiency and minimal cytotoxicity. Natural polysaccharides, due to their good biocompatibility and biodegradability, have been widely studied and applied. Amylopectin is one of polysaccharides with dendritic structure and numerous hydroxyl groups that could be used for subsequent modification. In this work, a series of dendritic cationic gene vectors comprising amylopectin backbones and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) side chains with different lengths (termed as AMY-PDs) were readily prepared by atom transfer radical polymerization (ATRP). The gene condensation ability, cytotoxicity and gene transfection of AMY-PDs carriers were investigated. In comparison with “gold-standard” poly(ethyleneimine) (PEI, 25 kDa), the AMY-PDs exhibited higher transfection efficiency with lower cytotoxicity. AMY-PDs could be further modified with Au nanoparticles (termed as AMY-PD@Au). The potential of the AMY-PD@Au vectors to be utilized as a CT contrast agent for imaging of cancer cells was investigated. Such AMY-PD@Au vectors may realize gene therapy with the ability of real-time imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.