Abstract
AbstractThe superoxide anion (O2.−) is widely engaged in the regulation of cell functions and is thereby intimately associated with the onset and progression of many diseases. To ascertain the pathological roles of O2.− in related diseases, developing effective methods for monitoring O2.− in biological systems is essential. Fluorescence imaging is a powerful tool for monitoring bioactive molecules in cells and in vivo owing to its high sensitivity and high temporal‐spatial resolution. Therefore, increasing numbers of fluorescent imaging probes have been constructed to monitor O2.− inside live cells and small animals. In this minireview, we summarize the methods for design and application of O2.−‐responsive fluorescent probes. Moreover, we present the challenges for detecting O2.− and suggestions for constructing new fluorescent probes that can indicate the production sites and concentration changes in O2.− as well as O2.−‐associated active molecules in living cells and in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.