Abstract

One of the challenging aspects of nanotechnology is the development of an effective and potentially universal method to place nanoparticles (NPs) into spatially well-defined, ordered, defect-free arrays. This can be achieved using “top-down” approaches, such as optical, electron beam, focused ion-beam and scanning probe lithography, or “bottom-up” approaches based on self-assembly. Here, we report the simple and rapid electrochemical generation of periodic surface defects, used to fabricate metallic NP arrays having good feature size and spacing control over a large area, without involving costly and time-consuming nanolithographic methods. Our high-throughput nanofabrication approach combines electrochemical anodization to quickly and reproducibly form a highly ordered Ta-based nanotemplate, in the form of inverted hemispherical caps (dimples), with the simplicity of thin metallic film dewetting techniques, forming a self-assembled metallic (individual metals or alloy) NP array. These can be used as nanoelectrode arrays that may have useful applications in analytical chemistry, biosensing, and electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call