Abstract
Antimicrobial peptides (AMPs) are expected to be an alternative promising solution to the global public health problem of antibiotic resistance due to their unique antimicrobial mechanism. However, extensive efforts are still needed to improve the shortcomings of traditional AMPs, such as rapid proteolysis, hemolysis, slow response, toxicity, etc., by exploring AMP-based new antimicrobial strategies. Here, we develop cationic peptide bundles into novel antimicrobial architectures that can rapidly kill multiple types of bacteria including drug-resistant bacteria. Remarkably, cationic peptide bundles can be used as polymerization units to cross-link with other polymers through simple two-component polymerization to produce diverse antimicrobial materials. For the proof of concept, three materials were fabricated and investigated, including an antimicrobial hydrogel that can significantly accelerate the healing of infected wounds, a multifunctional antimicrobial bioadhesive that shows promise in antimicrobial coatings for medical devices, and a photo-cross-linked antimicrobial gelatin hydrogel with broad application potential. The integration of antimicrobial units into the materials' backbone endows their biocompatibility. Cationic peptide bundles not only represent a new antimicrobial strategy but also provide a versatile and promising processing method to create diversified, multifunctional, and biocompatible antimicrobial materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.