Abstract

Three single-layer tetragonal silicon carbides (SiCs), termed as T1, T2 and T3, are proposed by density functional theory (DFT) computations. Although the three structures have the same topological geometry, they show versatile electronic properties from a semiconductor (T1), a semimetal (T2) to a metal (T3). The versatile properties originate from the rich bonds between Si and C atoms. The nanoribbons of the three SiCs also show interesting electronic properties. Especially, T1 nanoribbons possess exotic edge states, where electrons only distribute on one edge's silicon or carbon atoms. The band gaps of the T1 nanoribbons are constant because of no interaction between the edge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.