Abstract
Using a glycerine-water solution with various concentrations, we investigate the dispersion characteristics of photonic crystal fibers by selective filling of holes. Our analysis is based on a simple but accurate semi-vectorial solution of Helmholtz's equation by the finite difference method devised with a mode-field convergence technique and crosschecked by results with those from a deeply involved multipole method. Significantly, a better ultra-flatness but near-zero group velocity dispersion is revealed with a 20% glycerine-water solution that is superior to pure water of a very recent case when the holes of the first ring of the fiber are filled. This versatile effect in management of holes of identical diameter with liquid is expected to play a guiding role in studies of supercontinuum generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.