Abstract

AbstractEmerging 2D metal chalcogenides present excellent performance for electronic and optoelectronic applications. In contrast to graphene and other 2D materials, 2D metal chalcogenides possess intrinsic bandgaps, versatile band structures, and superior atmospheric stability. The many categories of 2D metal chalcogenides ensure that they can be applied to various practical scenarios. 2D metal monochalcogenides, dichalcogenides, and trichalcogenides are the three main categories of these materials. They have distinct crystal structures resulting in different characteristics. Some basic device characteristics, such as the charge carrier characteristics, scattering mechanisms, interfacial contacts, and band alignments of heterojunctions, are vital factors for practical device applications that ensure that the desired properties can be achieved. Various electronic, optoelectronic, and photonic applications based on 2D metal chalcogenides have been extensively investigated. 2D metal chalcogenides are considered as competitive candidates for future electronic and optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.