Abstract

Various rhodium(I) pincer complexes with different structural features have been prepared and found to display interesting self-assembly properties due to the extensive Rh(I)···Rh(I) interactions. The incorporation of electron-withdrawing -CF3 substituent has been found to improve the stability of the complexes and also facilitate the directed assembly of complex molecules, providing an opportunity for the systematic investigation of the various noncovalent interactions in their versatile self-assembly behaviors and insights into the structure-property relationship in governing the intermolecular interactions. An isodesmic growth mechanism is identified for the solvent-induced aggregation process. The complex molecules exhibit intense low-energy absorption bands corresponding to the absorptions of the dimers, trimers, and higher order oligomers upon aggregation, with energies related to the electronic properties of the tridentate N-donor ligand. Chiral auxiliaries have also been introduced into the rhodium(I) complexes to build up helical supramolecular assemblies and soft materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.