Abstract

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call