Abstract

Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this articulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and planning methods for object manipulation and grasping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call