Abstract
Prostate cancer (PCa) is one of the common cancers in males and its incidence keeps increasing globally. Approximately 81% of PCa is diagnosed during the early stage of the disease. The treatment options for prostate care include surgery, radiotherapy, and chemotherapy, but these treatments often have side effects that may lead to issues such as impotence or decreased bowel function. Our central goal is to test the apoptotic effects of Vernonia amygdalina Delile (an edible medicinal plant that is relatively inexpensive, nontoxic, and virtually without side effects) for the prevention of PCa using human adenocarcinoma (PC-3) cells as a test model. To address our central goal, PC-3 cells were treated with Vernonia amygdalina Delile (VAD). Cell cycle arrest and cell apoptosis were evaluated by Flow Cytometry assessment. Nucleosomal DNA fragmentation was detected by agarose gel electrophoresis. Flow cytometry data showed that VAD induced cell cycle arrest at the G0/G1 checkpoint and significantly upregulated caspase-3 in treated cells compared to the control cells. Agarose gel electrophoresis resulted in the formation of DNA ladders in VAD-treated cells. These results suggest that inhibition of cancer cell growth, induction of cell cycle arrest, and apoptosis through caspase-3 activation and nucleosomal DNA fragmentation are involved in the therapeutic mechanisms of VAD as a candidate drug towards the prevention and/or treatment of PCa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Research & Environmental Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.