Abstract

Similarities have long been recognized between vernalization, the prolonged exposure to cold temperatures that promotes the floral transition in many plants, and the chilling requirement to release bud dormancy in woody plants of temperate climates. In both cases the extended chilling period occurring during winter is used to coordinate developmental events to the appropriate seasonal time. However, whether or not these processes share common regulatory components and molecular mechanisms remain largely unknown. Both gene function and association genetics studies in Populus are beginning to answer this question. In Populus, studies have revealed that orthologs of the antagonistic flowering time genes FT and CEN/TFL1 might have central roles in both processes. We review Populus seasonal shoot development related to dormancy release and the floral transition and evidence for FT/TFL1-mediated regulation of these processes to consider the question of regulatory overlap. In addition, we discuss the potential for and challenges to integrating functional and population genomics studies to uncover the regulatory mechanisms underpinning these processes in woody plant systems.

Highlights

  • Variation in responses to prolonged periods of cold temperature underlies plant adaptation to different temperate and boreal climates

  • CEN1/CEN2 downregulation resulted in an earlier onset of first flowering and more intense flowering under field conditions. Considered together, these results suggest that relative levels of FT1 and CEN1 could contribute to dormancy release and meristem identity (Figure 1B)

  • Whereas CEN1 and FT2 expression peaks are clearly subsequent to dormancy release, FT1 upregulation overlapped with the reopening of PD in controlled environment studies of juvenile trees (Rinne et al, 2011)

Read more

Summary

Introduction

Variation in responses to prolonged periods of cold temperature underlies plant adaptation to different temperate and boreal climates. We focus on the release of bud dormancy and the floral transition, post-embryonic responses of shoot meristems that occur in trees.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.