Abstract

In this study, levan from Bacillus licheniformis NS032 was modified in an aqueous medium by octenyl succinic anhydride (OSA), and the properties of the obtained derivatives were studied. The maximum efficiency in the synthesis reaction was achieved at 40 °C and a polysaccharide slurry concentration of 30 %. Increasing the reagent concentration (2–10 %) led to an increase in the degree of substitution (0.016–0.048). Structures of derivatives were confirmed by FTIR and NMR. Scanning electronic microscopy, thermogravimetry, and dynamic light scattering analyses showed that the derivatives with degrees of substitution of 0.025 and 0.036 retained levan's porous structure and thermostability and showed better colloidal stability than the native polysaccharide. The intrinsic viscosity of derivatives increased upon modification, while the surface tension of the 1 % solution was lowered to 61 mN/m. Oil-in-water emulsions prepared with sunflower oil (10 % and 20 %) by mechanical homogenization and 2 and 10 % derivatives in the continuous phase showed mean oil droplet sizes of 106–195 μm, while the distribution curves exhibited bimodal character. The studied derivatives have a good capacity to stabilize emulsions, as they have a creaming index ranging from 73 % to 94 %. The OSA-modified levans could have potential applications in new formulations of emulsion-based systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call