Abstract

Non-volatile memory (NVM), aka persistent memory, is a new memory paradigm that preserves its contents even after power loss. The expected ubiquity of NVM has stimulated interest in the design of persistentconcurrent data structures, together with associated notions of correctness. In this paper, we present a formal proof technique for durable linearizability, which is a correctness criterion that extends linearizability to handle crashes and recovery in the context ofNVM.Our proofs are based on refinement of Input/Output automata (IOA) representations of concurrent data structures. To this end, we develop a generic procedure for transforming any standard sequential data structure into a durable specification and prove that this transformation is both sound and complete. Since the durable specification only exhibits durably linearizable behaviours, it serves as the abstract specification in our refinement proof. We exemplify our technique on a recently proposed persistentmemory queue that builds on Michael and Scott’s lock-free queue. To support the proofs, we describe an automated translation procedure from code to IOA and a thread-local proof technique for verifying correctness of invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.